Numerical calculation of energy deposition by high-energy electron beams: III-B. Improvements to the 6D phase space evolution model.
نویسندگان
چکیده
The phase space evolution model of Huizenga and Storchi, Morawska-Kaczyńska and Huizenga and Janssen et al has been modified to (i) allow application on currently available computer equipment with limited memory (128 Megabytes) and (ii) allow 3D dose calculations based on 3D computer tomographic patient data. This is a further development aimed at the use of the phase space evolution model in radiotherapy electrons beam treatment planning. The first modification regards the application of depth evolution of the phase space state combined with an alternative method to transport back-scattered electrons. This depth evolution method requires of the order of 15 times less computer memory than the energy evolution method. Results of previous and new electron transport methods are compared and show that the new electron transport method for back-scattered electrons hardly affects the accuracy of the calculated dose distributions. The second modification regards the simulation of electron transport through tissues with varying densities by applying distributed electron transport through similarly composed media with a limited number of fixed densities. Results of non-distributed and distributed electron transport are compared and show that the distributed electron transport method hardly affects the accuracy of the calculated dose distributions. It is also shown that the results of the new dose distribution calculations are still in good agreement with and require significantly less computation time than results obtained with the EGS4 Monte Carlo method.
منابع مشابه
Numerical Modeling of Non-equilibrium Plasma Discharge of Hydrogenated Silicon Nitride (SiH4/NH3/H2)
In this work, we model a radiofrequency discharge of hydrogenated silicon nitride in a capacitive coupled plasma reactor using Maxwellian and non-Maxwellian electron energy distribution function. The purpose is to investigate whether there is a real advantage and a significant contribution using non-Maxwellian electron energy distribution function rather than Maxwellian one for determining the ...
متن کاملMonte Carlo Simulation of Electron Beams produced by LIAC Intraoperative Radiation Therapy Accelerator
Background: One of the main problems of dedicated IORT accelerators is to determine dosimetric characteristics of the electron beams. Monte Carlo simulation of IORT accelerator head and produced beam will be useful to improve the accuracy of beam dosimetry.Materials and Methods: Liac accelerator head was modeled using the BEAMnrcMonte Carlo simulation system. Phase-space files were generated at...
متن کاملCalculation and evaluation of energy deposition and S-value caused by low-energy electrons in a multicellular model using Geant4-DNA
Today, targeted radiation therapy (TRT) methods for cancer treatment, besides the goal of completely destroying the target tumor, attempts to prevent nearby healthy cells from exposure to ionizing radiation as far as possible. Hence, short-range charged particles, such as low-energy electrons that are suited to achieving these two goals together, play an important role in TRT and so, adoption o...
متن کاملComparing experimental assessment of the peripheral dose outside the applicator in electron beams of ELEKTA with Treatment planning system
Introduction: The use of electrons in the electron therapy to destroy tumoral tissue is dedicated significant contribution of different methods of radiation therapy. Scattered radiation due to exited electrons of the applicator affect the dose out of the field in the patient's normal tissue. The aim of this study is to determine the peripheral dose outside the applicator in the...
متن کاملSingle-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 42 7 شماره
صفحات -
تاریخ انتشار 1997